Mobile Phones running Android and in a 64-bit Processor

Mobile Phones running Android and in a 64-bit Processor

Mobile Phone Repairs Crawley

Processors, memory, sdcards – the 3 most important things to consider when buying either mobile phones and computer units.

Video about Android Mobile Phones

mobile phone repairs crawley

Why you will (and won’t) want a 64-bit Android phone

Over the coming months, we’ll see a lot of new phones trumpeting 64-bit processors. Should you run out to get one? Is 64-bit silicon twice as good as that crummy 32-bit technology we’ve been using for years? The short answer is no. The longer answer is that the move to a newer ARM architecture includes some nice enhancements, but being 64-bit isn’t, by itself, all that important.

Before you pull out your wallet to snag the first 64-bit Android phone (the HTC Desire 510), or begin salivating over any of the other 64-bit phones coming this fall, let’s discuss what the term 64-bit really means, and why you should, and shouldn’t, care about it.

Just what is a 64-bit processor, anyway?

Ask around, and you’ll hear numerous definitions of the term “64-bit processor.” Most often, you’ll hear that it means the processor can use more than 4GB of RAM. This isn’t really true, as a chip’s “bit count” doesn’t really have anything to do with how much memory it can address.

Processors use two kinds of numbers to perform operations like addition, multiplication, and moving or copying data in memory. You have your integers (whole numbers like 90210) and floating-point numbers (those with decimals like 3.14159265359). If a processor can handle integer operations up to 16 bits long, it’s a 16-bit processor. If it can handle a 32-bit integer operation, it’s 32-bit, and (you guessed it) a 64-bit processor can handle 64-bit integers.

A 32-bit processor also uses 32 bits to point to locations in memory, while a 64-bit processor uses 64 bits. That means that a single program can address only 4GB with a 32-bit chip, even if the processor itself can address more. A 64-bit processor points to memory locations using 64 bits, allowing individual programs to address 16 exabytes—a practically unlimited amount of memory.

For most apps, a 64-bit processor doesn’t offer much benefit. Most of the apps we use on our phones and tablets really don’t have much need for 64-bit integer operations, or more than 4GB of memory per program. In fact, a 64-bit app can sometimes run slower than a 32-bit app, because using all those 64-bit memory pointers can make the app larger, sucking up more cache and RAM.

Read more here >>>


Source: Jason Cross

Image Source:  Rob Bulmahn